Advanced Search
Not logged in
Log In
Register
Hot Maps
Active Authors
Featured Maps
Random
Doors And Traps 2
Hover over the thumbnail for a full-size version.
Author
karlitos
Tags
action
author:karlitos
cool
easy
fun
playable
unrated
Created
2009-06-28
Last Modified
2009-06-28
Rating
2 more votes required for a rating.
Map Data
$Doors And Traps 2#karlitos#fun#00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111110111000000000000001000000010000000000000010000000100000000000000100000001000000000000001000000010000000000000010000000100000000000000100000001000000000000001000000010000000000000011111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000|5^324,228!9^324,228,1,0,13,10,1,0,-1!9^324,228,0,1,14,10,0,-1,0!9^324,228,0,1,14,11,0,-1,0!9^324,228,0,1,14,12,0,-1,0!9^324,228,0,1,14,13,0,-1,0!9^324,228,1,1,14,14,0,0,0!9^324,228,1,1,14,13,0,0,0!9^324,228,0,1,14,13,0,0,0!9^324,228,0,1,14,12,0,0,0!9^324,228,1,1,14,10,0,0,0!9^324,228,1,1,15,10,0,0,0!9^324,228,1,1,16,10,0,0,0!9^324,228,0,1,17,11,0,-1,0!9^324,228,0,1,17,12,0,-1,0!9^324,228,1,1,16,13,0,0,0!9^324,228,0,1,17,13,0,-1,0!9^324,228,0,1,16,13,0,-1,0!9^324,228,0,1,16,12,0,-1,0!9^324,228,1,1,16,14,0,0,0!9^324,228,0,1,15,15,0,-1,0!9^324,228,0,1,15,15,0,0,0!9^324,228,0,1,18,15,0,-1,0!9^324,228,0,1,18,13,0,-1,0!9^324,228,0,1,18,12,0,-1,0!9^324,228,0,1,18,11,0,-1,0!9^324,228,0,1,18,10,0,-1,0!9^324,228,0,1,18,9,0,-1,0!9^324,228,0,1,16,10,0,0,0!9^324,228,0,1,15,9,0,0,0!9^324,228,0,1,14,10,0,0,0!9^324,228,0,1,18,14,0,0,0!9^324,228,0,1,18,13,0,0,0!9^324,228,0,1,18,12,0,0,0!9^324,228,0,1,18,11,0,0,0!9^324,228,0,1,18,10,0,0,0!9^348,372,0,0,14,14,1,0,0!9^348,324,0,0,16,11,1,-1,0!9^396,324,1,0,15,15,1,0,-1!9^372,372,0,0,16,14,1,-1,0!9^396,372,0,0,18,14,1,-1,0!9^444,324,1,0,18,13,1,0,0!9^444,324,1,0,17,13,1,0,0!9^348,372,1,1,13,13,0,0,0!9^348,324,0,1,14,14,0,0,0!9^396,324,0,1,14,11,0,0,0!9^372,372,1,1,15,13,0,0,0!9^396,372,0,1,16,14,0,0,0!9^444,324,1,1,18,9,0,0,0!9^444,324,1,1,18,15,0,0,-1!9^444,324,1,1,17,15,0,0,-1!0^324,252!0^324,276!0^324,300!0^324,348!0^348,348!0^324,372!0^348,372!0^372,348!0^372,372!0^396,372!0^396,348!0^420,372!0^420,348!0^372,324!0^372,300!0^372,276!0^348,276!0^348,300!0^348,324!0^396,324!0^396,300!0^396,276!0^348,228!0^324,228!0^372,228!0^372,252!0^396,252!0^396,228!0^420,228!0^420,252!0^420,276!0^420,300!0^420,324!0^444,300!0^444,276!0^444,252!0^444,324!0^444,228!0^468,228!0^468,252!0^468,276!0^444,372!0^444,348!0^468,372!0^468,348!0^468,324!0^468,300!9^348,252,0,0,14,9,1,-1,0!0^324,324!0^300,324!9^300,312,1,0,12,13,0,0,-1!9^300,336,1,0,12,13,0,0,0!9^300,312,1,0,12,12,0,0,0!9^300,336,1,0,12,14,0,0,-1!9^288,324,0,0,12,13,0,-1,0!9^312,324,0,0,12,13,0,0,0!9^312,324,0,0,13,13,0,-1,0!9^288,324,0,0,11,13,0,0,0!9^276,324,1,0,11,13,1,0,0!9^276,300,1,0,11,12,1,0,0!9^276,300,1,1,11,14,0,0,-1!9^516,300,0,0,10,13,1,0,0!9^276,324,0,1,10,14,0,0,0!9^276,324,0,1,10,15,0,0,0!9^276,324,0,1,10,16,0,0,0!9^276,324,0,1,10,17,0,0,0!9^276,324,1,1,11,18,0,0,-1!9^276,324,1,1,12,18,0,0,-1!9^276,324,1,1,13,18,0,0,-1!9^276,324,1,1,14,18,0,0,-1!9^276,324,1,1,15,18,0,0,-1!9^276,324,1,1,16,18,0,0,-1!9^276,324,1,1,17,18,0,0,-1!9^276,324,1,1,18,18,0,0,-1!9^276,324,1,1,19,18,0,0,-1!9^276,324,1,1,20,18,0,0,-1!9^276,324,1,1,21,18,0,0,-1!9^276,324,0,1,22,17,0,-1,0!9^276,324,0,1,22,16,0,-1,0!9^276,324,0,1,22,15,0,-1,0!9^276,324,0,1,22,14,0,-1,0!9^276,324,0,1,22,13,0,-1,0!9^276,324,0,1,22,12,0,-1,0!9^276,324,0,1,22,11,0,-1,0!9^276,324,0,1,22,10,0,-1,0!9^276,324,0,1,22,9,0,-1,0!9^276,324,0,1,22,8,0,-1,0!9^276,324,0,1,22,7,0,-1,0!9^276,324,1,1,21,6,0,0,0!9^276,324,1,1,20,6,0,0,0!9^276,324,1,1,19,6,0,0,0!9^276,324,1,1,18,6,0,0,0!9^276,324,1,1,17,6,0,0,0!9^276,324,1,1,16,6,0,0,0!9^276,324,1,1,15,6,0,0,0!9^276,324,1,1,14,6,0,0,0!9^276,324,1,1,13,6,0,0,0!9^276,324,1,1,12,6,0,0,0!9^276,324,1,1,11,6,0,0,0!9^276,324,0,1,10,7,0,0,0!9^276,324,0,1,10,8,0,0,0!9^276,324,0,1,10,9,0,0,0!9^276,324,0,1,10,10,0,0,0!9^276,324,0,1,10,11,0,0,0!9^276,324,0,1,10,12,0,0,0!9^276,324,1,1,10,12,0,0,0!9^276,324,1,1,10,14,0,0,-1!9^300,324,0,0,12,13,1,-1,0!9^252,324,0,0,9,13,1,0,0!9^252,324,1,1,10,6,0,0,0!9^252,324,1,1,9,6,0,0,0!9^252,324,1,1,8,6,0,0,0!9^252,324,1,1,7,6,0,0,0!9^252,324,1,1,1,6,0,0,0!9^252,324,1,1,2,6,0,0,0!9^252,324,1,1,3,6,0,0,0!9^252,324,1,1,4,6,0,0,0!9^252,324,1,1,6,6,0,0,0!9^252,324,1,1,10,18,0,0,-1!9^252,324,1,1,9,18,0,0,-1!9^252,324,1,1,1,18,0,0,-1!9^252,324,1,1,2,18,0,0,-1!9^252,324,1,1,3,18,0,0,-1!9^252,324,1,1,8,18,0,0,-1!9^252,324,1,1,6,18,0,0,-1!9^252,324,1,1,5,18,0,0,-1!9^252,324,1,1,9,12,0,0,0!9^252,324,0,1,8,13,0,0,0!9^252,324,0,1,8,14,0,0,0!9^252,324,1,1,9,15,0,0,-1!9^252,324,0,1,9,15,0,0,0!9^252,324,0,1,9,16,0,0,0!9^252,324,0,1,9,16,0,-1,0!9^252,324,0,1,9,15,0,-1,0!9^228,372,0,0,8,17,1,0,0!9^252,324,1,1,8,16,0,0,0!9^252,324,1,1,7,16,0,0,0!9^252,324,0,1,6,17,0,0,0!9^252,324,0,1,8,18,0,-1,0!9^252,324,0,1,6,18,0,0,0!9^180,444,1,0,7,18,1,0,0!9^180,444,0,1,11,18,0,-1,0!9^180,444,0,1,11,19,0,-1,0!9^180,444,0,1,11,20,0,-1,0!9^180,444,0,1,11,21,0,-1,0!9^180,444,0,1,11,22,0,-1,0!9^180,444,0,1,11,23,0,-1,0!9^180,444,1,1,7,20,0,0,-1!9^180,444,0,1,6,19,0,0,0!9^180,444,1,1,8,20,0,0,-1!9^180,444,0,1,9,19,0,-1,0!9^180,444,0,1,9,19,0,0,0!9^180,444,0,1,9,20,0,0,0!9^180,444,1,1,8,21,0,0,-1!9^180,444,1,1,7,21,0,0,-1!9^180,444,0,1,6,20,0,0,0!9^180,444,0,1,9,21,0,0,0!9^180,444,0,1,9,21,0,-1,0!9^180,444,0,1,9,22,0,0,0!9^180,444,0,1,9,23,0,0,0!9^180,444,0,1,9,22,0,-1,0!9^180,444,1,1,8,22,0,0,0!9^180,444,1,1,7,22,0,0,0!9^180,444,1,1,7,21,0,0,0!9^180,444,1,1,8,21,0,0,0!9^180,444,0,1,5,23,0,0,0!9^180,444,0,1,5,22,0,0,0!9^180,444,0,1,5,21,0,0,0!9^180,444,0,1,5,20,0,0,0!9^180,444,0,1,5,19,0,0,0!9^180,444,0,1,4,18,0,0,0!9^180,444,0,1,4,19,0,0,0!9^180,444,1,1,4,19,0,0,-1!9^180,444,1,1,3,19,0,0,-1!9^180,444,1,1,2,19,0,0,-1!9^180,444,1,1,4,20,0,0,-1!9^180,444,1,1,3,20,0,0,-1!9^180,444,1,1,2,20,0,0,-1!9^180,444,0,1,4,21,0,0,0!9^180,444,0,1,3,23,0,0,0!9^180,444,1,1,4,22,0,0,0!9^252,564,1,0,9,18,1,0,0!9^180,492,1,0,9,20,1,0,0!9^204,540,1,0,6,21,1,0,-1!9^180,540,1,0,6,20,1,0,-1!9^204,516,1,0,6,19,1,0,-1!9^180,516,0,0,6,18,1,-1,0!9^132,564,0,0,4,20,1,0,0!9^180,444,1,1,4,21,0,0,-1!9^180,444,1,1,3,21,0,0,-1!9^180,444,0,1,2,20,0,-1,0!9^180,444,0,1,2,21,0,-1,0!9^180,444,0,1,2,22,0,-1,0!9^180,444,1,1,2,22,0,0,0!9^180,444,1,1,4,21,0,0,0!9^180,444,1,1,3,21,0,0,0!9^108,516,0,0,4,23,1,0,0!9^84,516,0,0,3,21,1,0,0!9^108,564,0,0,4,22,1,0,0!9^108,564,0,0,4,22,1,-1,0!9^108,468,1,0,1,19,1,0,-1!9^252,564,0,1,9,18,0,-1,0!9^180,492,1,1,9,20,0,0,-1!9^180,540,1,1,6,22,0,0,0!9^132,564,1,1,5,19,0,0,-1!9^108,564,1,0,3,23,1,0,-1!9^108,564,1,1,5,21,0,0,0!9^108,564,0,1,3,22,0,-1,0!9^108,468,1,1,1,20,0,0,-1!9^132,156,1,0,5,5,1,0,0!0^12,NaN!12^12,NaN!0^84,NaN!9^132,156,0,1,11,6,0,-1,0!9^132,156,0,1,11,5,0,-1,0!9^132,156,0,1,11,4,0,-1,0!9^132,156,0,1,11,3,0,-1,0!9^132,156,0,1,11,2,0,-1,0!9^132,156,0,1,6,5,0,-1,0!9^132,156,1,1,5,4,0,0,0!9^132,156,1,1,4,4,0,0,0!9^132,156,0,1,3,5,0,0,0!9^132,156,0,1,2,6,0,0,0!9^132,156,1,1,3,4,0,0,0!9^132,156,1,1,2,4,0,0,0!9^132,156,0,1,1,5,0,0,0!9^132,156,1,1,1,3,0,0,0!9^132,156,1,1,2,3,0,0,0!9^132,156,1,1,3,3,0,0,0!9^132,156,1,1,4,3,0,0,0!9^132,156,1,1,5,3,0,0,0!9^132,156,0,1,6,6,0,-1,0!9^132,156,0,1,4,6,0,0,0!9^132,108,0,0,6,4,1,-1,0!9^132,108,1,1,6,3,0,0,0!9^132,108,1,1,7,3,0,0,0!9^132,108,1,1,8,3,0,0,0!9^132,108,1,1,9,3,0,0,0!9^132,108,1,1,7,5,0,0,-1!9^132,108,1,1,8,5,0,0,-1!9^132,108,1,1,9,5,0,0,-1!9^132,108,0,1,10,4,0,-1,0!9^132,108,0,1,7,5,0,-1,0!9^132,108,1,1,7,6,0,0,-1!9^132,108,1,1,8,6,0,0,-1!9^132,108,1,1,9,6,0,0,-1!9^252,84,0,0,9,3,1,0,0!9^252,84,1,1,9,2,0,0,0!9^252,84,1,1,8,2,0,0,0!9^252,84,1,1,7,2,0,0,0!9^252,84,1,1,6,2,0,0,0!9^252,84,1,1,5,2,0,0,0!9^252,84,1,1,4,2,0,0,0!9^252,84,1,1,3,2,0,0,0!9^252,84,1,1,2,2,0,0,0!9^252,84,0,1,9,1,0,0,0!9^252,84,1,1,9,1,0,0,0!9^252,84,1,1,8,1,0,0,0!9^252,84,1,1,6,1,0,0,0!9^252,84,1,1,4,1,0,0,0!9^252,84,1,1,2,1,0,0,0!9^252,84,1,1,7,1,0,0,0!9^252,84,1,1,5,1,0,0,0!9^252,84,1,1,3,1,0,0,0!9^252,84,1,1,10,2,0,0,0!9^252,78,1,1,10,4,0,0,-1!9^132,150,1,1,5,7,0,0,-1!9^228,60,0,0,9,2,1,0,0!9^228,36,0,0,8,2,1,0,0!9^228,36,1,1,1,2,0,0,0!9^276,36,0,0,12,1,1,-1,0!9^276,36,0,1,22,6,0,-1,0!9^276,36,0,1,22,5,0,-1,0!9^276,36,0,1,22,4,0,-1,0!9^276,36,0,1,22,3,0,-1,0!9^276,36,0,1,22,2,0,-1,0!9^276,36,1,1,21,1,0,0,0!9^276,36,1,1,20,1,0,0,0!9^276,36,1,1,19,1,0,0,0!9^276,36,1,1,18,1,0,0,0!9^276,36,1,1,17,1,0,0,0!9^276,36,1,1,16,1,0,0,0!9^276,36,1,1,15,1,0,0,0!9^276,36,1,1,14,1,0,0,0!9^276,36,0,1,13,1,0,-1,0!9^276,36,0,1,13,2,0,-1,0!9^276,36,0,1,13,3,0,-1,0!9^276,36,0,1,13,4,0,-1,0!9^276,36,0,1,13,5,0,-1,0!9^276,36,1,1,13,3,0,0,-1!9^276,36,1,1,14,3,0,0,-1!9^276,36,1,1,15,3,0,0,-1!9^276,36,1,1,16,3,0,0,-1!9^276,36,1,1,17,3,0,0,-1!9^276,36,1,1,18,3,0,0,-1!9^276,36,1,1,19,3,0,0,-1!9^276,36,1,1,20,3,0,0,-1!9^276,36,1,1,12,4,0,0,0!9^276,36,1,1,11,3,0,0,0!9^276,36,1,1,11,5,0,0,0!9^276,36,1,1,12,2,0,0,0!9^282,36,0,1,10,1,0,0,0!9^276,36,1,1,11,2,0,0,-1!9^492,96,0,0,21,2,1,-1,0!9^468,144,0,0,20,2,1,-1,0!9^432,96,0,0,19,2,1,-1,0!9^372,120,0,0,18,2,1,-1,0!9^420,132,0,0,17,2,1,-1,0!9^300,132,0,0,16,2,1,-1,0!9^348,156,0,0,15,2,1,-1,0!9^348,84,0,0,14,2,1,-1,0!9^516,144,1,0,13,2,1,0,-1!9^516,36,0,0,22,1,1,-1,0!9^516,36,1,1,22,17,0,0,0!9^516,36,1,1,23,17,0,0,0!9^516,36,1,1,24,17,0,0,0!9^516,36,1,1,25,17,0,0,0!9^516,36,1,1,26,17,0,0,0!9^516,36,1,1,27,17,0,0,0!9^516,36,1,1,28,17,0,0,0!9^516,36,1,1,29,17,0,0,0!9^516,36,1,1,30,17,0,0,0!0^744,392!0^741,373!0^728,346!0^714,315!0^683,271!0^662,246!0^638,226!0^618,217!0^592,218!0^562,223!0^549,252!0^555,272!0^583,290!0^613,295!0^652,287!0^676,266!0^692,234!0^700,212!0^710,193!0^710,170!0^696,127!0^666,92!0^595,68!0^558,86!0^550,107!0^560,130!0^585,140!0^622,145!0^659,139!0^697,110!0^734,80!0^750,60!0^629,80!12^591,254!12^625,258!12^624,109!12^593,104!12^666,183!12^702,67!12^679,324!12^727,260!12^733,133!12^549,177!12^560,36!12^558,320!9^756,444,1,0,31,18,1,0,0!9^756,444,0,1,21,18,0,0,0!9^756,444,0,1,21,19,0,0,0!9^756,444,0,1,21,20,0,0,0!9^756,444,0,1,21,21,0,0,0!9^756,444,0,1,21,22,0,0,0!9^756,444,1,1,24,19,0,0,-1!9^756,444,1,1,23,19,0,0,-1!9^756,444,1,1,25,19,0,0,-1!9^756,444,0,1,23,19,0,-1,0!9^756,444,0,1,23,20,0,-1,0!9^756,444,0,1,23,21,0,-1,0!9^756,444,1,1,23,22,0,0,0!9^756,444,0,1,23,22,0,-1,0!9^756,444,1,1,24,22,0,0,0!9^756,444,1,1,25,22,0,0,0!9^756,444,0,1,25,22,0,0,0!9^756,444,0,1,25,21,0,0,0!9^756,444,1,1,24,21,0,0,-1!9^756,444,1,1,25,21,0,0,-1!9^756,444,1,1,27,19,0,0,-1!9^756,444,1,1,29,22,0,0,0!9^756,444,1,1,28,19,0,0,-1!9^756,444,1,1,28,22,0,0,0!9^756,444,1,1,29,19,0,0,-1!9^756,444,1,1,27,22,0,0,0!9^756,444,0,1,29,19,0,0,0!9^756,444,0,1,27,22,0,-1,0!9^756,444,0,1,29,20,0,0,0!9^756,444,0,1,27,21,0,-1,0!9^756,444,0,1,29,21,0,0,0!9^756,444,0,1,27,20,0,-1,0!9^660,468,0,0,27,19,1,-1,0!9^660,540,0,0,25,19,1,0,0!9^708,468,0,0,25,20,1,0,0!9^756,564,0,0,30,22,1,-1,0!9^732,444,0,1,29,18,0,0,0!9^732,468,1,1,30,20,0,0,-1!9^756,492,1,1,31,21,0,0,-1!9^732,516,1,1,30,22,0,0,-1!9^756,540,1,1,31,23,0,0,-1!9^732,564,0,1,29,23,0,0,0!9^732,468,1,1,29,21,0,0,0!9^732,468,0,1,27,22,0,0,0!9^756,492,0,1,28,21,0,-1,0!9^756,492,0,1,27,20,0,0,0!9^732,516,1,1,28,20,0,0,0!9^732,516,1,1,29,19,0,0,0!9^756,540,1,1,25,19,0,0,0!9^756,540,1,1,24,19,0,0,0!9^732,564,1,1,25,21,0,0,0!9^732,564,1,1,24,21,0,0,0!9^612,540,0,0,22,23,1,-1,0!9^612,516,0,0,23,23,1,-1,0!9^540,540,0,0,24,23,1,-1,0!9^708,564,0,0,25,23,1,-1,0!9^708,444,0,0,26,23,1,-1,0!9^516,564,0,0,21,23,1,-1,0!9^516,564,1,1,12,23,0,0,0!9^516,564,1,1,14,23,0,0,0!9^516,564,0,1,12,23,0,-1,0!9^516,564,0,1,12,23,0,0,0!9^516,564,0,1,14,23,0,-1,0!9^516,564,0,1,14,23,0,0,0!9^516,564,0,1,12,22,0,-1,0!9^516,564,0,1,12,22,0,0,0!9^516,564,0,1,14,22,0,-1,0!9^516,564,0,1,14,22,0,0,0!9^516,564,0,1,12,21,0,-1,0!9^516,564,0,1,12,21,0,0,0!9^516,564,0,1,14,21,0,-1,0!9^516,564,0,1,14,21,0,0,0!9^516,564,1,1,13,21,0,0,-1!9^516,564,1,1,14,21,0,0,-1!9^516,564,0,1,12,20,0,-1,0!9^516,564,0,1,13,20,0,0,0!9^516,564,1,1,12,20,0,0,-1!9^516,564,1,1,13,20,0,0,-1!9^516,564,0,1,15,20,0,-1,0!9^516,564,1,1,15,20,0,0,0!9^516,564,0,1,16,21,0,-1,0!9^516,564,1,1,16,21,0,0,0!9^516,564,0,1,16,21,0,0,0!9^516,564,1,1,17,20,0,0,0!9^516,564,0,1,17,20,0,0,0!9^516,564,1,1,17,20,0,0,-1!9^516,564,0,1,16,19,0,0,0!9^516,564,1,1,16,19,0,0,-1!9^516,564,0,1,16,19,0,-1,0!9^516,564,1,1,15,20,0,0,-1!12^300,564!12^300,540!12^300,516!12^300,492!12^324,492!12^348,516!12^348,540!12^348,564!12^396,516!12^396,492!12^396,468!12^420,492!11^276,564,348,492!12^372,492!2^516,480,-0.707106781186547,-0.707106781186547!12^444,480!12^456,480!12^468,492!12^480,492!9^516,564,1,1,21,22,0,0,0!12^492,504!12^324,468!12^300,468!12^312,468!2^348,504,0,-1!2^348,456,-0.707106781186547,-0.707106781186547!2^312,444,-1,0!9^108,420,1,0,4,16,1,0,0!9^108,414,0,1,5,17,0,-1,0!9^108,414,0,1,3,17,0,0,0!9^108,414,1,1,4,18,0,0,-1!0^108,420!0^108,420!0^108,420!0^108,420!0^108,420!0^108,420!0^108,420!0^108,420!0^108,420!0^108,420!12^108,372!12^132,372!12^156,372!12^84,396!12^84,420!12^180,372!12^180,312!12^156,312!12^96,384!12^132,312!12^108,312!12^84,312!12^204,312!12^84,324!12^84,228!12^108,228!12^96,228!12^120,228!12^132,228!12^144,228!12^156,228!12^168,228!12^162,228!12^150,228!12^138,228!12^90,228!12^102,228!12^114,228!12^126,228!9^132,192,1,1,3,9,0,0,-1!9^132,192,1,1,4,9,0,0,-1!9^132,192,1,1,5,9,0,0,-1!9^132,192,1,1,6,9,0,0,-1!9^132,192,1,1,7,9,0,0,-1!12^180,228!12^174,228!12^186,228!12^78,228!12^84,252!12^84,276!12^84,300!12^216,300!12^216,276!12^216,252!12^216,228!12^192,228!12^72,228!9^144,336,1,1,7,15,0,0,-1!9^144,336,1,1,6,15,0,0,-1!9^144,336,1,1,5,15,0,0,-1!9^144,336,1,1,4,15,0,0,-1!12^60,420!12^36,420!9^48,384,1,1,2,17,0,0,-1!9^48,384,1,1,1,17,0,0,-1!12^132,420!12^144,420!12^156,420!9^132,396,1,1,5,17,0,0,-1!9^132,396,1,1,6,17,0,0,-1!9^60,300,0,1,3,12,0,-1,0!9^60,300,0,1,3,11,0,-1,0!9^60,300,0,1,3,10,0,-1,0!12^24,288!12^24,264!12^24,252!12^24,276!12^72,NaN!9^240,276,1,0,5,6,1,0,0!12^252,300!12^240,300!12^228,300!9^240,264,1,1,10,12,0,0,-1!9^240,264,1,1,9,12,0,0,-1!2^276,456,0,1!0^540,420!0^552,420!0^564,420!0^576,420!0^588,420!0^600,420!0^612,420!0^624,420!0^648,420!0^636,420!0^660,420!0^672,420!0^684,420!0^696,420!0^708,420!0^720,420!0^732,420!0^744,NaN!9^228,108,1,0,6,5,1,0,-1!9^180,132,1,0,10,4,1,0,0!9^180,132,1,1,10,6,0,0,-1!9^228,108,0,1,5,4,0,0,0!9^756,444,1,1,31,18,0,0,0!9^756,444,1,1,31,19,0,0,-1!9^756,444,1,1,22,22,0,0,0!12^492,516!12^480,528!12^468,540!12^468,552!12^468,564!0^396,516!0^396,504!0^396,492!0^396,480!0^396,468!0^384,492!0^372,492!0^408,492!0^420,492!0^414,492!0^402,492!0^396,486!0^396,474!0^396,462!0^390,462!0^402,462!0^396,468!0^402,468!0^402,516!0^402,510!0^402,504!0^402,498!0^408,498!0^414,498!0^420,498!0^426,498!0^426,492!0^426,486!0^420,486!0^414,486!0^408,486!0^402,486!0^402,480!0^402,474!0^390,468!0^390,474!0^390,480!0^390,486!0^390,492!0^390,498!0^396,498!0^384,486!0^378,486!0^372,486!0^366,486!0^366,498!0^372,498!0^378,498!0^378,492!0^366,492!0^390,510!0^390,504!0^402,522!0^396,522!0^390,522!0^396,510!0^384,498#
Description
Another Doors and traps level!
Other maps by this author
Doors And Traps 1
Comments
Pages: (0)
blackcat0030
2009-07-15
Again lacks flow and had a strange contrast of a minedodger bit.
blackcat0030